74 research outputs found

    Repulsion Loss: Detecting Pedestrians in a Crowd

    Full text link
    Detecting individual pedestrians in a crowd remains a challenging problem since the pedestrians often gather together and occlude each other in real-world scenarios. In this paper, we first explore how a state-of-the-art pedestrian detector is harmed by crowd occlusion via experimentation, providing insights into the crowd occlusion problem. Then, we propose a novel bounding box regression loss specifically designed for crowd scenes, termed repulsion loss. This loss is driven by two motivations: the attraction by target, and the repulsion by other surrounding objects. The repulsion term prevents the proposal from shifting to surrounding objects thus leading to more crowd-robust localization. Our detector trained by repulsion loss outperforms all the state-of-the-art methods with a significant improvement in occlusion cases.Comment: Accepted to IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 201

    Respecting Time Series Properties Makes Deep Time Series Forecasting Perfect

    Full text link
    How to handle time features shall be the core question of any time series forecasting model. Ironically, it is often ignored or misunderstood by deep-learning based models, even those baselines which are state-of-the-art. This behavior makes their inefficient, untenable and unstable. In this paper, we rigorously analyze three prevalent but deficient/unfounded deep time series forecasting mechanisms or methods from the view of time series properties, including normalization methods, multivariate forecasting and input sequence length. Corresponding corollaries and solutions are given on both empirical and theoretical basis. We thereby propose a novel time series forecasting network, i.e. RTNet, on the basis of aforementioned analysis. It is general enough to be combined with both supervised and self-supervised forecasting format. Thanks to the core idea of respecting time series properties, no matter in which forecasting format, RTNet shows obviously superior forecasting performances compared with dozens of other SOTA time series forecasting baselines in three real-world benchmark datasets. By and large, it even occupies less time complexity and memory usage while acquiring better forecasting accuracy. The source code is available at https://github.com/OrigamiSL/RTNet

    End-to-End Reinforcement Learning for Automatic Taxonomy Induction

    Get PDF
    We present a novel end-to-end reinforcement learning approach to automatic taxonomy induction from a set of terms. While prior methods treat the problem as a two-phase task (i.e., detecting hypernymy pairs followed by organizing these pairs into a tree-structured hierarchy), we argue that such two-phase methods may suffer from error propagation, and cannot effectively optimize metrics that capture the holistic structure of a taxonomy. In our approach, the representations of term pairs are learned using multiple sources of information and used to determine \textit{which} term to select and \textit{where} to place it on the taxonomy via a policy network. All components are trained in an end-to-end manner with cumulative rewards, measured by a holistic tree metric over the training taxonomies. Experiments on two public datasets of different domains show that our approach outperforms prior state-of-the-art taxonomy induction methods up to 19.6\% on ancestor F1.Comment: 11 Pages. ACL 2018 Camera Read
    corecore